198 research outputs found

    Discrete logarithms in quasi-polynomial time in finite fields of fixed characteristic

    Get PDF
    We prove that the discrete logarithm problem can be solved in quasi-polynomial expected time in the multiplicative group of finite fields of fixed characteristic. More generally, we prove that it can be solved in the field of cardinality pn in expected time (pn)2log2(n)+O(1)

    Resolution of Linear Algebra for the Discrete Logarithm Problem Using GPU and Multi-core Architectures

    Get PDF
    In cryptanalysis, solving the discrete logarithm problem (DLP) is key to assessing the security of many public-key cryptosystems. The index-calculus methods, that attack the DLP in multiplicative subgroups of finite fields, require solving large sparse systems of linear equations modulo large primes. This article deals with how we can run this computation on GPU- and multi-core-based clusters, featuring InfiniBand networking. More specifically, we present the sparse linear algebra algorithms that are proposed in the literature, in particular the block Wiedemann algorithm. We discuss the parallelization of the central matrix--vector product operation from both algorithmic and practical points of view, and illustrate how our approach has contributed to the recent record-sized DLP computation in GF(28092^{809}).Comment: Euro-Par 2014 Parallel Processing, Aug 2014, Porto, Portugal. \<http://europar2014.dcc.fc.up.pt/\&gt

    Efficient SIMD arithmetic modulo a Mersenne number

    Get PDF
    This paper describes carry-less arithmetic operations modulo an integer 2^M − 1 in the thousand-bit range, targeted at single instruction multiple data platforms and applications where overall throughput is the main performance criterion. Using an implementation on a cluster of PlayStation 3 game consoles a new record was set for the elliptic curve method for integer factorization

    A kilobit hidden SNFS discrete logarithm computation

    Get PDF
    We perform a special number field sieve discrete logarithm computation in a 1024-bit prime field. To our knowledge, this is the first kilobit-sized discrete logarithm computation ever reported for prime fields. This computation took a little over two months of calendar time on an academic cluster using the open-source CADO-NFS software. Our chosen prime pp looks random, and p−−1p--1 has a 160-bit prime factor, in line with recommended parameters for the Digital Signature Algorithm. However, our p has been trapdoored in such a way that the special number field sieve can be used to compute discrete logarithms in F_p∗\mathbb{F}\_p^* , yet detecting that p has this trapdoor seems out of reach. Twenty-five years ago, there was considerable controversy around the possibility of back-doored parameters for DSA. Our computations show that trapdoored primes are entirely feasible with current computing technology. We also describe special number field sieve discrete log computations carried out for multiple weak primes found in use in the wild. As can be expected from a trapdoor mechanism which we say is hard to detect, our research did not reveal any trapdoored prime in wide use. The only way for a user to defend against a hypothetical trapdoor of this kind is to require verifiably random primes

    On the security of 1024-bit RSA and 160-bit elliptic curve cryptography

    Get PDF
    Meeting the requirements of NIST’s new cryptographic standard ‘Suite B Cryptography’ means phasing out usage of 1024-bit RSA and 160-bit Elliptic Curve Cryptography (ECC) by the year 2010. This write-up comments on the vulnerability of these systems to an open community attack effort and aims to assess the risk of their continued usage beyond 2010. We conclude that for 1024-bit RSA the risk is small at least until the year 2014, and that 160-bit ECC may safely be used for much longer – with the current state of the art in cryptanalysis we would be surprised if a public effort can make a dent in 160-bit ECC by the year 2020. Our assessment is based on the latest practical data of large scale integer factorization and elliptic curve discrete logarithm computation efforts

    Using the Cloud to Determine Key Strengths -- Triennial Update

    Get PDF
    We develop a new methodology to assess cryptographic key strength using cloud computing, by calculating the true economic cost of (symmetric- or private-) key retrieval for the most common cryptographic primitives. Although the present paper gives the current year (2018), 2015, 2012 and 2011 costs, more importantly it provides the tools and infrastructure to derive new data points at any time in the future, while allowing for improvements such as of new algorithmic approaches. Over time the resulting data points will provide valuable insight in the selection of cryptographic key sizes. For instance, we observe that the past clear cost-advantage of total cost of ownership compared to cloud-computing seems to be evaporating

    Mersenne Factorization Factory

    Get PDF
    We present work in progress to completely factor seventeen Mersenne numbers using a variant of the special number field sieve where sieving on the algebraic side is shared among the numbers. It is expected that it reduces the overall factoring effort by more than 50%. As far as we know this is the first practical application of Coppersmith’s “factorization factory” idea. Most factorizations used a new double-product approach that led to additional savings in the matrix step
    • 

    corecore